CULVER DUCK FARMS: ANAEROBIC DIGESTER COMBINED HEAT AND POWER PROJECT: CONCEPT TO REALITY

FIRST STEPS

- ☐ Preliminary evaluation
 - ☐ Current consumption cost
 - ☐ Biomass volumes
 - ☐ Biomass productivity
- ☐ Identify potential alternatives
- ☐ Conduct a full financial and technical feasibility study

TOPICAL DEVELOPMENTS

- ☐ Existing Net Metering Rules (2004)
- □ IURC/Investor Owned Utility Net Metering Rule mandate (2011)
- Technology developments continue (at an accelerating rate)
- ☐ Investor-owned utility partnerships (continues)

 Idea Lobbyist - laura.arnold@thearnoldgroupbiz www.indianadg.net

Clean Energy (US DOE) - www.midwestcleanenergy.org

Indiana Office of Energy Development - www.in.gov/oed

Database of State Incentives - www.dsireusa.org

FUNDING OPTIONS

- ☐ Self-funded project (converts underperforming municipal or private deposits to income producing resource)
- ☐ ESCO concept or guaranteed savings
- ☐ USDA Grant/Loan program
- ☐ State Revolving Loan program (municipal only)
- ☐ Combination of 3-P, utility capital improvement funds, revenue bond or other
- ☐ Industrial development bond
- ☐ Tax increment finance district, Tax phase-in
- ☐ PACE programs (in Michigan or Ohio)

POTENTIAL REVENUE STREAMS

- ☐ Incremental savings in utility costs
- ☐ Feed-in or net metering rates from utility
- ☐ Interest income from selffunded projects
- ☐ Investment tax credits

- ☐ Sale of energy credits
- ☐ Tipping fees
- ☐ Production tax credits
- ☐ Carbon credits

CASE STUDY CULVER DUCK FARMS, MIDDLEBURY, INDIANA

Culver Duck is one of the top two duck producers in the U.S.

A 5-generation, family built and operated duck farming and processing business with a 130-year history.

- ☐ Significant consumer of electricity and gas
- ☐ Significant producer of animal process by-products (480,000 ducks/week)
- ☐ A need and desire to achieve zero discharge of waste materials
- ☐ As a business, Culver has always been committed to a 'sustainable' model

CASE STUDY CULVER DUCK FARM, MIDDLEBURY, INDIANA

- Preliminary study in 2010 showed project convert the operation's process waste to energy. After careful consideration, the Culvers decided to proceed.
- JPR and OWS partner for substrate testing, viability and estimated cost of the proposed project. Completed detailed study that showed an attractive Return on Investment (ROI) (\$6 million ROI in less than 5 years).
- NIPSCO announced a renewable energy portfolio offering in 2011; submitted application. NIPSCO selects project; Agreement signed (15-year power purchase at 1.2MW).
- Design/build process with JPR, Specialty Concrete Construction,
 OWS, and the Culver project team. Construction began 3Q 2011 and went on line in 4Q 2012.

COMPOSITION

COLLECTION AND COMPOSITION DYNAMICS

- Number of sources, seasonality, cyclicality, variability in primary organics physical characteristics and composition
- Type and size of contamination
- Storage requirements, odor potential
- Implications for pretreatment systems, wet vs. dry digestion

LABORATORY ANALYSIS

- Analyses (TS, VS, Kj-N, C:N, Heavy Metals)
- Biogas Production Potential (Total Biogas, CH4%, % BVS)
- Hydrogen Sulfide Production Potential (inhibition potential)
- Digestate Chemical Composition (including Heavy Metals)
- Implications for Digestion Temperature, Digestate Treatment, Energy Production and Use

FEEDSTOCK ANALYSIS

CLIENT & SITE REQUIREMENTS

COMPOSITION AFFECTS DIGESTION SYSTEM SELECTION

- Composition impacts cost and feasibility of wet and dry digestion technology options
 - Pre-treatment equipment requirements
 - Water addition/removal
 - Parasitic heat and power load, fuel needs, labor
 - Plant layout and surface area requirements
 - Operational reliability parameters
 - Biogas productivity implications
 - Plant emissions and odors
 - Wastewater treatment

TECHNOLOGY ASSESSMENT

ECONOMIC ANALYSIS OF TECHNICALLY FEASIBLE

CASE STUDY CULVER DUCK FARMS, MIDDLEBURY, INDIANA

CASE STUDY CULVER DUCK FARMS, MIDDLEBURY, INDIANA

- 85' diameter digester capable of holding 933 million gallons
- Three 400 KW biogas generators (2G Cenergy)
- Control building uses specialized digester process

software

- 35' diameter reception/ mixing pit for silage
- Pump building
- Ferrous Chloride and Co-Feed Tanks

ALOF OFFIDAL

LESSONS LEARNED

- Avoid winter startups
- Coordinate with genset provider for partial load, gradual startup
- Co-feeds come and go, highly competitive
- Know your mixing capability limits as substrates change
- USDA grant process/timing incompatible

CASE STUDY CULVER DUCK FARM, MIDDLEBURY, INDIANA

CURRENT CO-FEEDS:

105,000 gallons duck blood and offal – weekly
10 tons of corn stover – daily
5 tons of potato waste – daily
1-4 tons of corn dog waste – daily
20 tons from Meijer Central Kitchen - weekly

- Produces up to 1.2 MW of electricity enough to operate Culver main plant and hatchery with energy left over during average energy usage to power about 60 homes.
- Will provide waste heat to replace ~75% of the farm's purchased natural gas.
- Eliminated trucking of processing wastes
- Enhances management of residual nutrients in Culver's wastewater in a responsible manner, reducing odors and increasing agronomic benefits.

CASE STUDY CULVER DUCK FARM, MIDDLEBURY, INDIANA

- Reduces carbon emissions by 11,000 tons/year
- Produces rich, organic compost
- Successful implementation of AD technology for duck wastes
- particularly challenging due to high nitrogen content
- 300,000 gallons of nitrogen-rich wastewater now treated in constructed wetlands and storage lagoon which functions even in cold weather at nearly 100% efficiency
- Water recycled via spray irrigation back to Culver corn fields, feed production

